Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(4): e26645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445523

RESUMO

Rewards are a broad category of stimuli inducing approach behavior to aid survival. Extensive evidence from animal research has shown that wanting (the motivation to pursue a reward) and liking (the pleasure associated with its consumption) are mostly regulated by dopaminergic and opioidergic activity in dedicated brain areas. However, less is known about the neuroanatomy of dopaminergic and opioidergic regulation of reward processing in humans, especially when considering different types of rewards (i.e., social and nonsocial). To fill this gap of knowledge, we combined dopaminergic and opioidergic antagonism (via amisulpride and naltrexone administration) with functional neuroimaging to investigate the neurochemical and neuroanatomical bases of wanting and liking of matched nonsocial (food) and social (interpersonal touch) rewards, using a randomized, between-subject, placebo-controlled, double-blind design. While no drug effect was observed at the behavioral level, brain activity was modulated by the administered compounds. In particular, opioid antagonism, compared to placebo, reduced activity in the medial orbitofrontal cortex during consumption of the most valued social and nonsocial rewards. Dopamine antagonism, however, had no clear effects on brain activity in response to reward anticipation. These findings provide insights into the neurobiology of human reward processing and suggest a similar opioidergic regulation of the neural responses to social and nonsocial reward consumption.


Assuntos
Dopamina , Antagonistas de Entorpecentes , Animais , Humanos , Antagonistas de Entorpecentes/farmacologia , Emoções , Tato , Receptores Opioides
2.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
3.
Elife ; 92020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33046213

RESUMO

The observation of animal orofacial and behavioral reactions has played a fundamental role in research on reward but is seldom assessed in humans. Healthy volunteers (N = 131) received 400 mg of the dopaminergic antagonist amisulpride, 50 mg of the opioidergic antagonist naltrexone, or placebo. Subjective ratings, physical effort, and facial reactions to matched primary social (affective touch) and nonsocial (food) rewards were assessed. Both drugs resulted in lower physical effort and greater negative facial reactions during reward anticipation, especially of food rewards. Only opioidergic manipulation through naltrexone led to a reduction in positive facial reactions to liked rewards during reward consumption. Subjective ratings of wanting and liking were not modulated by either drug. Results suggest that facial reactions during anticipated and experienced pleasure rely on partly different neurochemical systems, and also that the neurochemical bases for food and touch rewards are not identical.


Studies in rats and other species have shown that two chemical messengers in the brain regulate how much an animal desires a reward, and how pleasant receiving the reward is. In this context, chemicals called opioids control both wanting and enjoying a reward, whereas a chemical called dopamine only regulates how much an animal desires it. However, since these results were obtained from research performed on animals, further studies are needed to determine if these chemicals play the same roles in the human brain. Korb et al. show that the same brain chemicals that control reward anticipation and pleasure in rats are also at work in humans. In the experiment, 131 healthy volunteers received either a drug that blocks opioid signaling in the brain, a drug that blocks dopamine signaling, or a placebo, a pill with no effect. Then, participants were given, on several occasions, either sweet milk with chocolate or a gentle caress on the forearm. Participants rated how much they wanted each of the rewards before receiving it, and how much they liked it after experiencing it. To measure their implicit wanting of the reward, participants also pressed a force-measuring device to increase their chances of receiving the reward. Additionally, small electrodes measured the movement of the volunteer's smiling or frowning muscles to detect changes in facial expressions of pleasure. Volunteers taking either drug pressed on the device less hard than the participants taking the placebo, suggesting they did not want the rewards as much, and they frowned more as they anticipated the reward, indicating less anticipatory pleasure. However, only the volunteers taking the opioid-blocking drug smiled less when they received a reward, indicating that these participants did not get as much pleasure as others out of receiving it. These differences were most pronounced when volunteers looked at or received the sweet milk with chocolate. This experiment helps to shed light on the chemicals in the human brain that are involved in reward-seeking behaviors. In the future, the results may be useful for developing better treatments for addictions.


Assuntos
Amissulprida/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Naltrexona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Prazer/efeitos dos fármacos , Recompensa , Adulto , Emoções/efeitos dos fármacos , Feminino , Alimentos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...